index

NVIDIA TensorRT and Triton: Production LLM Inference

Deploying LLMs at scale requires more than loading a model and serving requests. Production systems must handle concurrent users, minimize latency, maximize GPU utilization, and provide observability. NVIDIA’s TensorRT-LLM and Triton Inference Server form a battle-tested stack for these requirements.

TensorRT-LLM became fully open-source in March 2025 and now delivers over 40,000 tokens per second on Blackwell B200 GPUs running Llama 41. The stack integrates with NVIDIA Dynamo for datacenter-scale orchestration across thousands of GPUs2.

This guide covers the complete deployment pipeline: building optimized TensorRT engines, configuring Triton for LLM workloads, and tuning for production performance.


TensorRT-LLM overview

TensorRT-LLM is NVIDIA’s open-source library for compiling and running large language models on NVIDIA GPUs. Built on PyTorch, it provides a Python API for model definition while generating highly optimized CUDA kernels for inference3. The current release (January 2026) uses PyTorch 2.9.0, TensorRT 10.9, and CUDA 12.8.14.

The library handles several optimization categories:

Quantization: TensorRT-LLM supports NVFP4, FP8, INT4 AWQ, and INT8 SmoothQuant quantization formats. NVFP4 is a 4-bit floating-point format introduced with Blackwell GPUs that reduces KV cache memory by 50% compared to FP8 while maintaining less than 1% accuracy loss on benchmarks including LiveCodeBench, MMLU-PRO, and MBPP5. FP8 on Hopper and Blackwell architectures delivers 2.5-3x inference speed improvements compared to FP166.

Kernel fusion: Multiple transformer operations combine into single CUDA kernels. LayerNorm, matrix multiplications, bias additions, and activation functions execute together instead of requiring separate kernel launches and memory transfers7.

Attention optimizations: Custom FlashAttention kernels, multi-head/multi-query/grouped-query attention support, and fused attention implementations reduce memory bandwidth requirements.

Parallelism: Tensor parallelism splits matrix multiplications across GPUs. Pipeline parallelism distributes model layers sequentially across devices. Wide expert parallelism (EP) enables efficient Mixture-of-Experts inference on models like DeepSeek-R1 and Llama 48. All strategies enable serving models larger than single-GPU memory9.

Speculative decoding: TensorRT-LLM supports EAGLE-3, multi-token prediction (MTP), and ReDrafter techniques for accelerated token generation. EAGLE-3 with speculative decoding achieves up to 4x speedup on Llama 4 Maverick10. ReDrafter, developed by Apple and integrated into TensorRT-LLM, achieves up to 2.7x throughput improvements on H100 GPUs11.

Triton + TensorRT-LLM Architecture
Client Applications gRPC / HTTP / OpenAI-compatible API
Triton Inference Server Request scheduling, model management, metrics
Model RepositorySchedulerBackend Manager
Ensemble Pipeline Preprocessing → TRT-LLM → Postprocessing
TokenizerTensorRT-LLM BackendDetokenizer
TensorRT-LLM Runtime Executor API with in-flight batching
KV Cache ManagerBatch SchedulerCUDA Graphs
TensorRT Engine Optimized CUDA kernels
Fused AttentionQuantized WeightsLayer Fusion
NVIDIA GPU H100 / A100 / L40S
Core Components
Optimization Layers

Building TensorRT engines for LLMs

TensorRT-LLM converts model weights into optimized TensorRT engines through a two-step process: checkpoint conversion and engine building.

Step 1: Quantize and convert checkpoints

The quantize.py script converts Hugging Face checkpoints to TensorRT-LLM format while applying quantization:

# NVFP4 quantization (Blackwell GPUs - recommended for B200/GB200)
python examples/quantization/quantize.py \
  --model_dir /path/to/llama-70b \
  --qformat nvfp4 \
  --kv_cache_dtype nvfp4 \
  --output_dir /output/llama-70b-nvfp4 \
  --tp_size 4

# FP8 quantization (Hopper/Ada/Blackwell GPUs)
python examples/quantization/quantize.py \
  --model_dir /path/to/llama-70b \
  --qformat fp8 \
  --kv_cache_dtype fp8 \
  --output_dir /output/llama-70b-fp8 \
  --tp_size 4

# INT4 AWQ quantization (all GPU generations)
python examples/quantization/quantize.py \
  --model_dir /path/to/llama-70b \
  --qformat int4_awq \
  --awq_block_size 64 \
  --output_dir /output/llama-70b-int4awq \
  --tp_size 4

The --tp_size parameter specifies tensor parallelism degree. Set this to the number of GPUs you will use for inference. INT4 AWQ uses block-wise quantization; smaller block sizes (64 vs 128) provide better accuracy at marginal compute cost12. NVFP4 uses block-wise quantization with size 16 and FP8 scaling factors for higher precision during dequantization5.

Step 2: Build the engine

The trtllm-build command compiles checkpoints into TensorRT engines:

trtllm-build \
  --checkpoint_dir /output/llama-70b-fp8 \
  --output_dir /engines/llama-70b-fp8 \
  --gemm_plugin fp8 \
  --gpt_attention_plugin fp8 \
  --max_batch_size 64 \
  --max_input_len 4096 \
  --max_seq_len 8192 \
  --use_fused_mlp enable \
  --workers 4

Key build parameters:

ParameterPurpose
--gemm_pluginEnables cuBLASLt for optimized matrix operations
--gpt_attention_pluginUses efficient attention kernels with in-place KV cache updates
--use_fused_mlpEnables horizontal fusion in GatedMLP layers
--max_batch_sizeMaximum concurrent sequences the engine supports
--max_input_lenMaximum input context length
--max_seq_lenMaximum total sequence length (input + output)

For FP8 on Hopper GPUs, the GEMM + SwiGLU fusion in Gated-MLP combines two Matmul operations and one SwiGLU operation into a single kernel13.

Layer fusion patterns

TensorRT’s compiler identifies and fuses operation sequences automatically. Common fusion patterns include:

  • RMSNorm fusion: Combines normalization with subsequent quantization
  • Attention fusion: Merges Q/K/V projections with attention computation
  • MLP fusion: Fuses gate and up projections with activation functions
  • AllReduce fusion: Combines reduction with LayerNorm after multi-GPU communication

The --reduce_fusion enable flag eliminates extra copies from local buffers to shared buffers in communication kernels14.


Disaggregated serving

Disaggregated serving separates compute-intensive prefill operations from memory-bound decode operations onto specialized hardware clusters. This architecture addresses the fundamental mismatch between prefill (compute-bound, benefits from high FLOPS) and decode (memory-bound, benefits from high memory bandwidth) phases15.

TensorRT-LLM supports three disaggregated serving approaches:

trtllm-serve: A command-line utility that deploys OpenAI-compatible servers for each context and generation instance, with an orchestrator coordinating requests.

Dynamo integration: NVIDIA Dynamo orchestrates requests across prefill and decode workers with KV-cache-aware routing. The smart router determines optimal decode workers based on KV cache block availability2.

NIXL acceleration: The NVIDIA Inference Exchange Library (NIXL) accelerates KV cache transfer between GPUs with low-latency communication primitives.

Disaggregated architectures demonstrate up to 6.4x throughput improvements and 20x reduction in latency variance. Organizations report 15-40% infrastructure cost reductions through optimized hardware allocation16.


In-flight batching and paged attention

Traditional batching waits until a batch fills before processing. In-flight batching (also called continuous batching or iteration-level batching) processes new requests immediately without waiting for existing sequences to complete17.

How in-flight batching works

The TensorRT-LLM scheduler manages two phases:

  1. Context phase: Processing input prompts, computing initial KV cache entries
  2. Generation phase: Autoregressive token generation using cached keys/values

With in-flight batching, sequences in context phase process together with sequences in generation phase. When a generation sequence finishes, a new context sequence can immediately take its slot. This keeps GPU utilization high even with variable-length inputs and outputs.

Paged KV cache

Instead of allocating KV cache as contiguous memory blocks, paged attention splits the cache into smaller blocks that can be allocated non-contiguously18. This approach:

  • Eliminates memory fragmentation from variable sequence lengths
  • Enables KV cache sharing between requests with common prefixes
  • Supports block sizes of 8, 16, 32, 64, or 128 tokens per block

The paged KV cache allocates memory upfront in TensorRT-LLM rather than on-demand. Plan for approximately 60% additional VRAM beyond model weights for KV cache allocation19.

Chunked prefill

Long input contexts can delay generation for concurrent requests. Chunked prefill divides the context phase into smaller chunks, enabling better parallelization with decode operations20.

This feature allows GPU systems to handle longer contexts and higher concurrency by decoupling memory consumption from context length.


Triton Inference Server architecture

Triton provides the serving infrastructure around TensorRT-LLM engines. It handles request routing, model loading, batching, and metrics collection. The OpenAI-compatible frontend transitioned from beta to stable in 2025, enabling drop-in compatibility with OpenAI API clients21.

Core components

Model Repository: A directory structure containing model configurations and artifacts. Each model has a config.pbtxt file defining inputs, outputs, and backend settings.

Scheduler: Routes incoming requests to model instances. For LLMs, the scheduler typically delegates batching decisions to the TensorRT-LLM runtime.

Backend Manager: Loads and manages model backends. The TensorRT-LLM backend uses the C++ Executor API for optimal performance.

Metrics Server: Exposes Prometheus-compatible metrics on port 8002 by default.

Security note: Organizations should update to Triton version 25.07 or later to address CVE-2025-23319, CVE-2025-23320, and CVE-2025-23334, which when chained could allow unauthenticated remote code execution22.

Model ensemble structure

The TensorRT-LLM backend uses an ensemble of three models:

model_repository/
├── ensemble/
│   └── config.pbtxt
├── preprocessing/
│   ├── config.pbtxt
│   └── 1/model.py
├── tensorrt_llm/
│   ├── config.pbtxt
│   └── 1/
│       └── [engine files]
└── postprocessing/
    ├── config.pbtxt
    └── 1/model.py

Preprocessing: Tokenizes input text using the model’s tokenizer TensorRT-LLM: Runs inference on the optimized engine Postprocessing: Detokenizes output IDs back to text

The ensemble model chains these together automatically.


Configuring Triton for LLMs

tensorrt_llm model configuration

The core configuration for the TensorRT-LLM backend:

name: "tensorrt_llm"
backend: "tensorrtllm"
max_batch_size: 64

model_transaction_policy {
  decoupled: true
}

input [
  { name: "input_ids" data_type: TYPE_INT32 dims: [-1] },
  { name: "input_lengths" data_type: TYPE_INT32 dims: [1] },
  { name: "request_output_len" data_type: TYPE_INT32 dims: [1] },
  { name: "end_id" data_type: TYPE_INT32 dims: [1] },
  { name: "pad_id" data_type: TYPE_INT32 dims: [1] },
  { name: "stream" data_type: TYPE_BOOL dims: [1] optional: true }
]

output [
  { name: "output_ids" data_type: TYPE_INT32 dims: [-1] },
  { name: "sequence_length" data_type: TYPE_INT32 dims: [1] }
]

parameters {
  key: "gpt_model_path"
  value: { string_value: "/engines/llama-70b-fp8" }
}

parameters {
  key: "batching_type"
  value: { string_value: "inflight_fused_batching" }
}

parameters {
  key: "max_tokens_in_paged_kv_cache"
  value: { string_value: "2048000" }
}

parameters {
  key: "kv_cache_free_gpu_mem_fraction"
  value: { string_value: "0.85" }
}

Key parameters explained:

ParameterValuePurpose
decoupled: trueRequired for streamingEnables async responses
batching_typeinflight_fused_batchingEnables continuous batching
max_tokens_in_paged_kv_cacheToken countTotal KV cache capacity
kv_cache_free_gpu_mem_fraction0.0-1.0Fraction of free GPU memory for KV cache

Instance configuration

The instance_count parameter controls concurrent execution. For most workloads, set this to 5 or higher23:

instance_group [
  {
    count: 5
    kind: KIND_GPU
    gpus: [0, 1, 2, 3]
  }
]

Queue management

Control request queuing behavior:

parameters {
  key: "max_queue_delay_microseconds"
  value: { string_value: "100000" }
}

parameters {
  key: "max_queue_size"
  value: { string_value: "256" }
}

Setting max_queue_delay_microseconds above 0 improves batch formation by waiting for additional requests to arrive.


TensorRT-LLM backend setup walkthrough

1. Pull the container

docker pull nvcr.io/nvidia/tritonserver:25.10-py3

2. Create model repository

# Clone the backend repository
git clone https://github.com/triton-inference-server/tensorrtllm_backend.git
cd tensorrtllm_backend

# Copy template models
mkdir -p /triton_models
cp -r all_models/inflight_batcher_llm/* /triton_models/

3. Build the TensorRT-LLM engine

Follow the engine building steps from earlier, placing the output in /engines/.

4. Configure the models

Use the provided template filling script:

ENGINE_DIR=/engines/llama-70b-fp8
TOKENIZER_DIR=/models/llama-70b
MAX_BATCH=64

python3 tools/fill_template.py -i /triton_models/preprocessing/config.pbtxt \
  tokenizer_dir:${TOKENIZER_DIR},triton_max_batch_size:${MAX_BATCH}

python3 tools/fill_template.py -i /triton_models/tensorrt_llm/config.pbtxt \
  triton_backend:tensorrtllm,triton_max_batch_size:${MAX_BATCH},\
  decoupled_mode:true,engine_dir:${ENGINE_DIR},\
  batching_type:inflight_fused_batching

python3 tools/fill_template.py -i /triton_models/postprocessing/config.pbtxt \
  tokenizer_dir:${TOKENIZER_DIR},triton_max_batch_size:${MAX_BATCH}

python3 tools/fill_template.py -i /triton_models/ensemble/config.pbtxt \
  triton_max_batch_size:${MAX_BATCH}

5. Launch the server

python3 scripts/launch_triton_server.py \
  --model_repo /triton_models \
  --world_size 4

# Or directly with tritonserver
tritonserver \
  --model-repository=/triton_models \
  --http-port=8000 \
  --grpc-port=8001 \
  --metrics-port=8002

6. Verify deployment

curl localhost:8000/v2/health/ready
# Response: {"ready":true}

curl localhost:8000/v2/models
# Lists all loaded models with READY status

Performance tuning

Concurrency and batch size

The relationship between max_batch_size, engine build parameters, and runtime behavior:

  • Engine max_batch_size: Hard limit set at build time
  • Triton max_batch_size: Soft limit for request acceptance
  • Runtime batch size: Determined by TRT-LLM scheduler based on available requests and memory

The TRT-LLM scheduler can form batches larger than Triton’s max_batch_size when using in-flight batching. The scheduler optimizes based on available KV cache memory and pending requests24.

GPU memory allocation

Balance KV cache size against model memory requirements:

# Calculate KV cache memory
kv_cache_tokens = max_batch_size * max_seq_len
kv_cache_bytes = kv_cache_tokens * num_layers * 2 * hidden_size * dtype_bytes

For a 70B model with 80 layers, 8192 hidden size, and FP16 KV cache:

  • 64 batch * 8192 seq_len = 524,288 tokens
  • 524,288 * 80 * 2 * 8192 * 2 bytes = ~1.3 TB (exceeds GPU memory)

Use kv_cache_free_gpu_mem_fraction to limit allocation to available memory. Start with 0.85 and adjust based on OOM behavior.

CUDA Graphs

TensorRT-LLM uses CUDA Graphs to reduce kernel launch overhead. The runtime captures execution graphs for common batch sizes and replays them without CPU intervention.

CUDA Graph padding handles mismatched batch sizes by padding to the nearest captured graph size. This trades minor compute waste for consistent low-latency execution25.

Multi-GPU configuration

For tensor parallelism across GPUs:

# 4-way tensor parallelism
trtllm-build --tp_size 4 ...

# Launch with matching world size
python3 launch_triton_server.py --world_size 4

The backend uses MPI to coordinate execution across GPUs. Leader mode uses one process to manage inference; Orchestrator mode distributes coordination26.


Monitoring and metrics

Prometheus metrics endpoint

Triton exposes metrics at http://localhost:8002/metrics by default. Enable with:

tritonserver --allow-metrics=true --allow-gpu-metrics=true

Key metrics for LLM workloads

The TensorRT-LLM backend exposes custom metrics:

MetricDescription
nv_trt_llm_request_countTotal inference requests
nv_trt_llm_inflight_request_countCurrently processing requests
nv_trt_llm_kv_cache_block_usageKV cache utilization
nv_trt_llm_generation_tokens_per_secondOutput throughput

Standard Triton metrics include:

MetricDescription
nv_inference_request_successSuccessful request count
nv_inference_compute_output_duration_usInference latency
nv_gpu_utilizationGPU compute utilization
nv_gpu_memory_used_bytesGPU memory consumption

Grafana dashboard setup

NVIDIA provides pre-built Grafana dashboards in the tutorials repository27. Import the JSON configuration:

# Download dashboard JSON
curl -O https://raw.githubusercontent.com/triton-inference-server/tutorials/main/\
Deployment/Kubernetes/TensorRT-LLM_Autoscaling_and_Load_Balancing/\
grafana_inference-metrics_dashboard.json

Configure Prometheus as a data source in Grafana, then import the dashboard JSON.

GenAI-Perf benchmarking

Measure throughput and latency with GenAI-Perf:

genai-perf \
  --model ensemble \
  --backend tensorrtllm \
  --endpoint localhost:8001 \
  --streaming \
  --concurrency 32 \
  --input-sequence-length 512 \
  --output-sequence-length 128

The tool reports time-to-first-token, inter-token latency, throughput, and percentile statistics28.


Comparison with alternatives

LLM Inference Engine Comparison
TensorRT-LLM
vLLM
TGI v3
Throughput (A100 80GB)
700 tok/s @ 100 users
600-650 tok/s @ 100 users
600-650 tok/s @ 100 users
Time to First Token
35-50ms TTFT
50-80ms TTFT
50-70ms TTFT
Setup Complexity
1-2 weeks
1-2 days
1-2 days
Best Use Case
Peak performance
High concurrency
Long contexts
Benchmarks from BentoML testing Llama 3 70B Q4. Results vary by model and hardware.

TensorRT-LLM

Best for maximum throughput when you can invest in setup complexity. January 2026 benchmarks show B200 delivering 60,000 tokens per second per GPU at 1,000 tokens per second per user interactivity on Llama 3.3 70B29. On Llama 4 Scout, B200 achieves over 42,000 tokens per second with a 3.4x performance increase over H2001.

Strengths: Peak throughput, Tensor Core optimization, deep NVIDIA integration, EAGLE-3 speculative decoding, NVFP4 quantization Trade-offs: Longer setup time (1-2 weeks for production tuning), engine rebuilds required for config changes

vLLM

Best for teams prioritizing development velocity and concurrency handling. PagedAttention provides GPU-friendly memory layout without fragmentation30. vLLM v0.14.1 (January 2026) adds W4A8 grouped GEMM on Hopper, MoE + LoRA support with AWQ Marlin, and Transformers v5 RoPE compatibility31.

Inferact Inc. launched in January 2026 to commercialize vLLM with 150Mfundingatan150M funding at an 800M valuation32. The vLLM project now runs on over 400,000 GPUs worldwide.

Strengths: Easy setup (1-2 days), consistent latency under load, active community, broad hardware support (NVIDIA, AMD, Intel, TPU) Trade-offs: Lower peak throughput than TensorRT-LLM on Blackwell GPUs

SGLang

SGLang has become a production standard, generating trillions of tokens daily across deployments at xAI, AMD, NVIDIA, LinkedIn, Cursor, and major cloud providers33. On H100 hardware, SGLang achieves 16,215 tokens per second, matching LMDeploy and exceeding vLLM by 29%34.

Strengths: RadixAttention for prefix caching (50%+ hit rates in production), zero-overhead CPU scheduler, prefill-decode disaggregation, native C++ optimization Trade-offs: Smaller ecosystem than vLLM

Text-Generation-Inference v3

TGI is now in maintenance mode, with Hugging Face recommending vLLM or SGLang for new deployments35. TGI v3 achieves 13x speedups on prompts exceeding 200,000 tokens by reusing earlier token computations36.

Strengths: Prefix caching, long context handling, Hugging Face ecosystem, zero-config mode Trade-offs: Maintenance mode limits new feature development

Decision matrix

RequirementRecommended Engine
Maximum throughput on BlackwellTensorRT-LLM
Fast iteration cyclesvLLM or SGLang
High concurrency, consistent latencyvLLM
Prefix caching in productionSGLang
Long chat histories (200K+ tokens)TGI v3
Kubernetes-native deploymentTriton + TensorRT-LLM
Datacenter-scale orchestrationNVIDIA Dynamo
Multi-vendor hardware supportvLLM

Complete deployment example

End-to-end deployment of Llama 3.1 70B on 4x H100 80GB:

Environment setup

# Pull containers
docker pull nvcr.io/nvidia/tritonserver:25.10-py3
docker pull nvcr.io/nvidia/pytorch:25.10-py3

# Download model
huggingface-cli download meta-llama/Llama-3.1-70B-Instruct \
  --local-dir /models/llama-3.1-70b

Build engine

docker run --gpus all -v /models:/models -v /engines:/engines \
  nvcr.io/nvidia/pytorch:25.10-py3 bash -c "
    pip install tensorrt-llm

    # Quantize to FP8
    python -m tensorrt_llm.commands.quantize \
      --model_dir /models/llama-3.1-70b \
      --qformat fp8 \
      --kv_cache_dtype fp8 \
      --output_dir /engines/llama-70b-ckpt \
      --tp_size 4

    # Build engine
    trtllm-build \
      --checkpoint_dir /engines/llama-70b-ckpt \
      --output_dir /engines/llama-70b-engine \
      --gemm_plugin fp8 \
      --gpt_attention_plugin fp8 \
      --max_batch_size 64 \
      --max_input_len 4096 \
      --max_seq_len 8192 \
      --use_fused_mlp enable \
      --workers 4
"

Deploy with Triton

docker run --gpus all -p 8000:8000 -p 8001:8001 -p 8002:8002 \
  -v /engines:/engines \
  -v /models:/models \
  -v /triton_models:/triton_models \
  nvcr.io/nvidia/tritonserver:25.10-py3 bash -c "
    # Configure models (using fill_template.py as shown earlier)
    # ...

    tritonserver \
      --model-repository=/triton_models \
      --allow-metrics=true \
      --allow-gpu-metrics=true
"

Test inference

import tritonclient.grpc as grpcclient
import numpy as np

client = grpcclient.InferenceServerClient(url="localhost:8001")

# Prepare inputs
prompt = "Explain the attention mechanism in transformers:"
input_ids = tokenizer.encode(prompt)  # Use appropriate tokenizer

inputs = [
    grpcclient.InferInput("text_input", [1], "BYTES"),
    grpcclient.InferInput("max_tokens", [1], "INT32"),
    grpcclient.InferInput("stream", [1], "BOOL"),
]

inputs[0].set_data_from_numpy(np.array([[prompt]], dtype=object))
inputs[1].set_data_from_numpy(np.array([[256]], dtype=np.int32))
inputs[2].set_data_from_numpy(np.array([[True]], dtype=bool))

# Stream responses
for response in client.infer("ensemble", inputs, stream=True):
    output = response.as_numpy("text_output")
    print(output[0].decode(), end="", flush=True)

Blackwell GPU deployment

NVIDIA Blackwell architecture (B200, GB200, GB300) delivers substantial inference improvements over Hopper:

MetricB200 vs H200
Tokens per second (Llama 3.3 70B)4x higher throughput29
Tokens per second (Llama 4 Scout)3.4x improvement1
DeepSeek-R1 inference5x vs Hopper per GPU37
Memory per GPUUp to 288GB HBM3e (Blackwell Ultra)

The GB200 NVL72 rack-scale platform connects 72 Blackwell GPUs using fifth-generation NVLink with 1,800 GB/s bidirectional bandwidth between all chips38. Blackwell Ultra (GB300) delivers 45% higher DeepSeek-R1 throughput than GB200 with 1.5x more NVFP4 compute and 2x more attention-layer acceleration37.

Key Blackwell optimizations in TensorRT-LLM:

  • NVFP4 quantization for weights and KV cache
  • Programmatic dependent launch (PDL) for reduced kernel latencies
  • Enhanced all-to-all communication primitives
  • CuteDSL NVFP4 grouped GEMM integration

The January 2026 TensorRT-LLM optimizations delivered up to 2.8x throughput increases per Blackwell GPU over the previous three months39.


Summary

TensorRT-LLM and Triton Inference Server provide production-grade LLM serving with:

  • Engine optimization: NVFP4/FP8 quantization, kernel fusion, custom attention kernels, and EAGLE-3 speculative decoding
  • Efficient batching: In-flight batching and paged KV cache for high throughput
  • Disaggregated serving: Separate prefill and decode phases for optimized resource utilization
  • Flexible deployment: Multi-GPU, multi-node support with MPI coordination and NVIDIA Dynamo orchestration
  • Observability: Prometheus metrics integration for monitoring

The setup complexity is higher than alternatives like vLLM or SGLang, but peak performance on Blackwell GPUs is also higher. For teams already in the NVIDIA ecosystem deploying at scale, this stack delivers consistent, optimized inference. Organizations prioritizing faster iteration should evaluate vLLM (broad hardware support, active development) or SGLang (production-proven prefix caching).


References

2026 updates

Footnotes

  1. NVIDIA Accelerates Inference on Meta Llama 4 Scout and Maverick 2 3

  2. NVIDIA Dynamo Open-Source Inference Framework 2

  3. TensorRT-LLM Documentation

  4. TensorRT-LLM Release Notes

  5. Introducing NVFP4 for Efficient Low-Precision Inference 2

  6. TensorRT-LLM Overview

  7. TensorRT-LLM Optimization Guide

  8. Delivering Massive Performance Leaps for MoE Inference on Blackwell

  9. TensorRT-LLM Architecture Overview

  10. Blackwell Breaks 1,000 TPS/User Barrier with Llama 4 Maverick

  11. TensorRT-LLM Supports Recurrent Drafting for LLM Inference

  12. TensorRT-LLM Quantization Examples

  13. trtllm-build Command Reference

  14. DeepSeek-R1 Optimization on B200

  15. Disaggregated Serving in TensorRT-LLM

  16. Disaggregation in LLMs: Evolution in AI Infrastructure

  17. TensorRT-LLM In-Flight Batching

  18. TensorRT-LLM GPT Attention

  19. Boosting LLMs Performance in Production

  20. TensorRT-LLM Chunked Prefill

  21. Triton Inference Server Release Notes

  22. NVIDIA Patches Critical RCE Vulnerability Chain

  23. Triton TensorRT-LLM Model Configuration

  24. TensorRT-LLM Backend Documentation

  25. NVIDIA TensorRT-LLM H100 Performance

  26. Triton Multi-Node Deployment

  27. Triton Autoscaling and Load Balancing Tutorial

  28. Triton Metrics Documentation

  29. NVIDIA Blackwell Leads on InferenceMAX Benchmarks 2

  30. vLLM vs TensorRT-LLM Comparison

  31. vLLM Releases - GitHub

  32. Inferact launches with $150M to commercialize vLLM

  33. SGLang GitHub Repository

  34. LLM Inference Engines: vLLM vs LMDeploy vs SGLang 2026

  35. Hugging Face Text Generation Inference

  36. vLLM vs TensorRT-LLM vs TGI Technical Comparison

  37. NVIDIA Blackwell Ultra Sets New Inference Records in MLPerf 2

  38. NVIDIA Blackwell Platform Arrives

  39. NVIDIA Blackwell Raises Bar in InferenceMAX Benchmarks